Connect with us

Subscribe

technology

Landmark moment for brain-controlled tech

frontier tech concept
Credit: iStock

|21 February 2017|

USA

In a major milestone Stanford researchers have shown people with paralysis type via direct brain control at the highest speeds and accuracy levels ever recorded

One or two baby-aspirin-sized electrode arrays were placed in the brains of three participants with severe limb weaknes to record signals from the motor cortex, a region controlling muscle movement. These signals were transmitted to a computer via a cable and translated by algorithms into point-and-click commands guiding a cursor to characters on an onscreen keyboard.

Each participant, after minimal training, mastered the technique sufficiently to outperform the results of any previous test of brain-computer interfaces, or BCIs, for enhancing communication by people with similarly impaired movement. Notably, the study participants achieved these typing rates without the use of automatic word-completion assistance common in electronic keyboarding applications nowadays, which likely would have boosted their performance.

One participant, Dennis Degray of Menlo Park, California, was able to type 39 correct characters per minute, equivalent to about eight words per minute.

This point-and-click approach could be applied to a variety of computing devices, including smartphones and tablets, without substantial modifications, the Stanford researchers said.

“Our study’s success marks a major milestone on the road to improving quality of life for people with paralysis,” said Jaimie Henderson, MD, professor of neurosurgery, who performed two of the three device-implantation procedures. The third took place at Massachusetts General Hospital.

Henderson and Krishna Shenoy, PhD, professor of electrical engineering, are co-senior authors of the study, which will be published online today in eLife. The lead authors are former postdoctoral scholar Chethan Pandarinath, PhD, and postdoctoral scholar Paul Nuyujukian, MD, PhD, both of whom spent well over two years working full time on the project at Stanford.

“This study reports the highest speed and accuracy, by a factor of three, over what’s been shown before,” said Shenoy, a Howard Hughes Medical Institute investigator who’s been pursuing BCI development for 15 years and working with Henderson since 2009. “We’re approaching the speed at which you can type text on your cellphone.”

 

 

Newsletter Signup

Written By

Iain is a creative writer, journalist and lecturer, and formerly an editor of two international business publications. Iain is now editor of Innovators Magazine, as well as the strategic content director for OnePoint5Media.

Advertisement

Why an ecological civilisation is the answer

Editor's Picks

How to think like a cyborg

Top 2021 podcasts

Looking beyond era of greed

Top 2021 podcasts

Can AI deliver a net zero world?

Top 2021 stories

Connect
Newsletter Signup