Inspired by nature, a team of researchers has designed a flying robot which could provide vital support in an emergency.
The team from Imperial College London has developed the prototype AquaMAV robot, which dives like a gannet and launches like a flying fish, to collect water samples.
The AquaMAV is designed to collect samples in situations such as monitoring water quality in reservoirs and measuring changes in ocean salinity to gauge the effects of climate change.
Currently, researchers generally have to use boats to manually collect samples. AquaMAV is designed to be rapid, efficient, and more cost effective than this method. It can also carry out tests in dangerous situations such as in disaster zones or from locations currently inaccessible to people, such as deep under the ocean.
One of the current drawbacks for small scale flying robots is that they generally lack sufficient power to make the transition from water to the air. The team in today’s study say they have potentially overcome this problem with their drone by mimicking the way flying fish make ‘impulsive’ leaps from the water.
The drone only weighs 200 grams and can currently achieve speeds of around 30 miles per hour from a starting point beneath the water. It can make the aerial leap even if conditions on the surface are rough. The researchers say AquaMAV can currently fly around five kilometres to and from an analysis. The team say the aerial range would enable those analysing the samples to be at a safe distance away from a potentially hazardous situation.
Dr Mirko Kovac, the director of the Aerial Robotics Lab in Imperial’s Department of Aeronautics, said: “During an emergency scenario such as a major oil leak an AquaMav could fly and dive into isolated patch of water, where it could collect samples or loiter and record environmental data. The vehicle could then perform a short take-off and return to its launch site to submit samples for analysis. This would enable a fast, targeted response that could not be matched by the current methods.”
Rob Siddall, lead author and postgraduate from Imperial’s Department of Aeronautics, added: “We are really excited by our AquaMAV prototype. We believe we may have overcome the power density problem which makes launching out of the water so challenging for small drones. Nature often has an elegant way of solving engineering challenges. By examining the diving qualities of gannets and the leaping behaviour of flying fish, we can make an aerial drone that needs less on board control, making it more robust and more affordable to manufacture.”
The researchers are currently looking to collaborate with oceanographers and various water authorities to take their testing to the next stage. The aim is to deploy the robot in a wide variety of scenarios, to test the robot’s limits in waves, wind and weather, and examine the physics of high speed dives into water. An additional propulsion system is also under development to make the AquaMAV fully aquatic, capable of long periods of submarine operation.
Iain is a creative writer, journalist and lecturer, and formerly an editor of two international business publications. Iain is now editor of Innovators Magazine, as well as the strategic content director for OnePoint5Media.
This website uses cookies to improve your experience, and also collects some information using Google Analytics. Cookie settingsACCEPT
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are as essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.